Manycore processorManycore processors are special kinds of multi-core processors designed for a high degree of parallel processing, containing numerous simpler, independent processor cores (from a few tens of cores to thousands or more). Manycore processors are used extensively in embedded computers and high-performance computing. Manycore processors are distinct from multi-core processors in being optimized from the outset for a higher degree of explicit parallelism, and for higher throughput (or lower power consumption) at the expense of latency and lower single-thread performance.
Integrated circuit designIntegrated circuit design, or IC design, is a sub-field of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits, or ICs. ICs consist of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography. IC design can be divided into the broad categories of digital and analog IC design. Digital IC design is to produce components such as microprocessors, FPGAs, memories (RAM, ROM, and flash) and digital ASICs.
Healthcare industryThe healthcare industry (also called the medical industry or health economy) is an aggregation and integration of sectors within the economic system that provides goods and services to treat patients with curative, preventive, rehabilitative, and palliative care. It includes the generation and commercialization of goods and services lending themselves to maintaining and re-establishing health.
OS-level virtualizationOS-level virtualization is an operating system (OS) paradigm in which the kernel allows the existence of multiple isolated user space instances, called containers (LXC, Solaris containers, Docker, Podman), zones (Solaris containers), virtual private servers (OpenVZ), partitions, virtual environments (VEs), virtual kernels (DragonFly BSD), or jails (FreeBSD jail or chroot jail). Such instances may look like real computers from the point of view of programs running in them.
BlackfinThe Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.
Address decoderIn digital electronics, an address decoder is a binary decoder that has two or more inputs for address bits and one or more outputs for device selection signals. When the address for a particular device appears on the address inputs, the decoder asserts the selection output for that device. A dedicated, single-output address decoder may be incorporated into each device on an address bus, or a single address decoder may serve multiple devices. A single address decoder with n address input bits can serve up to 2n devices.
ExynosExynos, formerly Hummingbird (), is a series of ARM-based system-on-chips developed by Samsung Electronics' System LSI division and manufactured by Samsung Foundry. It is a continuation of Samsung's earlier S3C, S5L and S5P line of SoCs. Exynos is mostly based on the ARM Cortex cores with the exception of some high end SoCs which featured Samsung's proprietary "M" series core design; though from 2021 onwards even the flagship high-end SoC's will be featuring ARM Cortex cores.
Context switchIn computing, a context switch is the process of storing the state of a process or thread, so that it can be restored and resume execution at a later point, and then restoring a different, previously saved, state. This allows multiple processes to share a single central processing unit (CPU), and is an essential feature of a multiprogramming or multitasking operating system. In a traditional CPU, each process - a program in execution - utilizes the various CPU registers to store data and hold the current state of the running process.
Mach (kernel)Mach (mɑːk) is a kernel developed at Carnegie Mellon University by Richard Rashid and Avie Tevanian to support operating system research, primarily distributed and parallel computing. Mach is often considered one of the earliest examples of a microkernel. However, not all versions of Mach are microkernels. Mach's derivatives are the basis of the operating system kernel in GNU Hurd and of Apple's XNU kernel used in macOS, iOS, iPadOS, tvOS, and watchOS. The project at Carnegie Mellon ran from 1985 to 1994, ending with Mach 3.
MicrokernelIn computer science, a microkernel (often abbreviated as μ-kernel) is the near-minimum amount of software that can provide the mechanisms needed to implement an operating system (OS). These mechanisms include low-level address space management, thread management, and inter-process communication (IPC). If the hardware provides multiple rings or CPU modes, the microkernel may be the only software executing at the most privileged level, which is generally referred to as supervisor or kernel mode.