Two-layer adaptive signal control framework for large-scale networks combining efficient Max-Pressure and Perimeter Control
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and r ...
Dynamical flow networks serve as macroscopic models for, e.g., transportation networks, queuing networks, and distribution networks. While the flow dynamics in such networks follow the conservation of mass on the links, the outflow from each link is often ...
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
Decentralized storage networks offer services with intriguing possibilities to reduce inequalities in an extremely centralized market. Fair distribution of rewards, however, is still a persistent problem in the current generation of decentralized applicati ...
This work addresses the problem of learning the topology of a network from the signals emitted by the network nodes. These signals are generated over time through a linear diffusion process, where neighboring nodes exchange messages according to the underl ...
Time-sensitive networks, as in the context of IEEE Time-Sensitive Networking (TSN) and IETF Deterministic Networking (DetNet), offer deterministic services with guaranteed bounded latency in order to support safety-critical applications. In this thesis, we ...
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
We study an energy market composed of producers who compete to supply energy to different markets and want to maximize their profits. The energy market is modeled by a graph representing a constrained power network where nodes represent the markets and lin ...
Last-mile delivery in the logistics chain contributes to congestion in urban networks due to frequent stops. Crowd-shipping is a sustainable and low-cost alternative to traditional delivery but relies heavily on the availability of occasional couriers. In ...
Artificial Neural Networks (ANN) are habitually trained via the back-propagation (BP) algorithm. This approach has been extremely successful: Current models like GPT-3 have O(10 11 ) parameters, are trained on O(10 11 ) words and produce awe-inspiring resu ...