Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
When a traumatic event causes complete denervation, muscle functional recovery is highly compromised. A possible solution to this issue is the implantation of a biodegradable polymeric tubular scaffold, providing a biomimetic environment to support the nerve regeneration process. However, in the case of consistent peripheral nerve damage, the regeneration capabilities are poor. Hence, a crucial challenge in this field is the development of biodegradable micro- nanostructured polymeric carriers for controlled and sustained release of molecules to enhance nerve regeneration. The aim of these systems is to favor the cellular processes that support nerve regeneration to increase the functional recovery outcome. Drug delivery systems (DDSs) are interesting solutions in the nerve regeneration framework, due to the possibility of specifically targeting the active principle within the site of interest, maximizing its therapeutical efficacy. The scope of this review is to highlight the recent advances regarding the study of biodegradable polymeric DDS for nerve regeneration and to discuss their potential to enhance regenerative performance in those clinical scenarios characterized by severe nerve damage.
Silvestro Micera, Francesco Iberite