Publication

Live Birth of a Healthy Child in a Couple with Identical mtDNA Carrying a Pathogenic c.471_477delTTTAAAAinsG Variant in the MOCS2 Gene

Abstract

Molybdenum cofactor deficiency type B (MOCODB; #252160) is an autosomal recessive metabolic disorder that has only been described in 37 affected patients. In this report, we describe the presence of an in-frame homozygous variant (c.471_477delTTTAAAAinsG) in the MOCS2 gene in an affected child, diagnosed with Ohtahara syndrome according to the clinical manifestations. The analysis of the three-dimensional structure of the protein and the amino acid substitutions suggested the pathogenicity of this mutation. To prevent transmitting this mutation to the next generation, we used preimplantation genetic testing for the monogenic disorders (PGT-M) protocol to select MOCS2 gene mutant-free embryos for transfer in an in vitro fertilization (IVF) program. As a result, a healthy child was born. Interestingly, both parents of the proband shared an identical mitochondrial (mt) DNA control region, assuming their close relationship and thus suggesting that both copies of the nuclear rare variant c.471_477delTTTAAAAinsG may have been transmitted from the same female ancestor. Our estimation of the a priori probability of meeting individuals with the same mtDNA haplotype confirms the assumption of a possible distant maternal relationship among the proband's direct relatives.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (39)
Genetic disorder
A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders are the most common, the term is mostly used when discussing disorders with a single genetic cause, either in a gene or chromosome. The mutation responsible can occur spontaneously before embryonic development (a de novo mutation), or it can be inherited from two parents who are carriers of a faulty gene (autosomal recessive inheritance) or from a parent with the disorder (autosomal dominant inheritance).
Preimplantation genetic diagnosis
Preimplantation genetic diagnosis (PGD or PIGD) is the genetic profiling of embryos prior to implantation (as a form of embryo profiling), and sometimes even of oocytes prior to fertilization. PGD is considered in a similar fashion to prenatal diagnosis. When used to screen for a specific genetic disease, its main advantage is that it avoids selective abortion, as the method makes it highly likely that the baby will be free of the disease under consideration.
Genetic testing
Genetic testing, also known as DNA testing, is used to identify changes in DNA sequence or chromosome structure. Genetic testing can also include measuring the results of genetic changes, such as RNA analysis as an output of gene expression, or through biochemical analysis to measure specific protein output. In a medical setting, genetic testing can be used to diagnose or rule out suspected genetic disorders, predict risks for specific conditions, or gain information that can be used to customize medical treatments based on an individual's genetic makeup.
Show more
Related publications (37)

Predicting type 2 diabetes risk before and after solid organ transplantation using polygenic scores in a Danish cohort

Jacques Fellay, Christian Axel Wandall Thorball

Type 2 diabetes mellitus (T2DM) can be multifactorial where both genetics and environmental factors play a role. We aimed to investigate the use of polygenic risk scores (PRS) in the prediction of pre-transplant T2DM and post-transplant diabetes mellitus ( ...
Lausanne2023

Identifying genetic and dietary modulators of metabolic disorders using systems genetics

Xiaoxu Li

Long-term consumption of lipid-rich foods can contribute to common metabolic diseases and systemic low-grade inflammation. However, dietary responses and the development of non-communicable diseases are shaped by genetic factors and gene-by-environment int ...
EPFL2023

Genetic, metabolic, and molecular insights into the diverse outcomes of diet-induced obesity in mouse

Alexis Maximilien Bachmann

Overweight and obesity are increasingly common public health issues worldwide, leading to a wide range of diseases from metabolic syndrome to steatohepatitis and cardiovascular diseases. While the increase in the prevalence of obesity is partly attributabl ...
EPFL2021
Show more
Related MOOCs (6)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.