**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Robust optimization of control parameters for WEC arrays using stochastic methods

Abstract

This work presents a new computational optimization framework for the robust control of parks of Wave Energy Converters (WEC) in irregular waves. The power of WEC parks is maximized with respect to the individual control damping and stiffness coefficients of each device. The results are robust with respect to the incident wave direction, which is treated as a random variable. Hydrodynamic properties are computed using the linear potential model, and the dynamics of the system is computed in the frequency domain. A slamming constraint is enforced to ensure that the results are physically realistic. We show that the stochastic optimization problem is well posed. Two optimization approaches for dealing with stochasticity are then considered: stochastic approximation and sample average approximation. The outcomes of the above mentioned methods in terms of accuracy and computational time are presented. The results of the optimization for complex and realistic array configurations of possible engineering interest are then discussed. Results of extensive numerical experiments demonstrate the efficiency of the proposed computational framework.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (32)

Related concepts (34)

Related publications (66)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Digital Signal Processing II

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

Global optimization

Global optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .

Random variable

A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as it is not actually random nor a variable, but rather it is a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads and tails ) in a sample space (e.g., the set ) to a measurable space (e.g., in which 1 corresponding to and −1 corresponding to ), often to the real numbers.

Corentin Jean Dominique Fivet, Ioannis Mirtsopoulos

Mainstream approaches to design spatial architectural forms that are structurally relevant consist either in adapting well-known and catalogued conventional types or in searching for close-to-optimum solutions of well-defined problems. Few means exist to e ...

2023Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...

We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...

2024