Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been a tremendous amount of work on utilizing this information for the current compute and me ...
2020
In the recent years, Deep Neural Networks (DNNs) have managed to succeed at tasks that previously appeared impossible, such as human-level object recognition, text synthesis, translation, playing games and many more. In spite of these major achievements, o ...
EPFL2022
, , ,
Two distinct limits for deep learning have been derived as the network width h -> infinity, depending on how the weights of the last layer scale with h. In the neural tangent Kernel (NTK) limit, the dynamics becomes linear in the weights and is described b ...
IOP PUBLISHING LTD2020
, , , ,
Neural tangent kernel (NTK) is a powerful tool to analyze training dynamics of neural networks and their generalization bounds. The study on NTK has been devoted to typical neural network architectures, but it is incomplete for neural networks with Hadamar ...
2022
We establish a direct connection between general tensor networks and deep feed-forward artificial neural networks. The core of our results is the construction of neural-network layers that efficiently perform tensor contractions and that use commonly adopt ...
AMER PHYSICAL SOC2022
This thesis consists of three applications of machine learning techniques to risk management. The first chapter proposes a deep learning approach to estimate physical forward default intensities of companies. Default probabilities are computed using artifi ...
A reduced basis method based on a physics-informed machine learning framework is developed for efficient reduced-order modeling of parametrized partial differential equations (PDEs). A feedforward neural network is used to approximate the mapping from the ...
We introduce a variational framework to learn the activation functions of deep neural networks. Our aim is to increase the capacity of the network while controlling an upper-bound of the actual Lipschitz constant of the input-output relation. To that end, ...
A common pattern of progress in engineering has seen deep neural networks displacing human-designed logic. There are many advantages to this approach, divorcing decisionmaking from human oversight and intuition has costs as well. One is that deep neural ne ...