Many-body physics with strongly interacting fermions coupled to light
Related publications (71)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture and is central to modern electronic structure theory. It also underpins the computation and interpretation ...
We reveal an intriguing anomaly in the temperature dependence of the specific heat of a one-dimensional Bose gas. The observed peak holds for arbitrary interaction and remembers a superfluid-to-normal phase transition in higher dimensions, but phase transi ...
A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical an ...
Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum ...
The hunt for exotic quantum phase transitions described by emergent fractionalized de-grees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak ...
We photoexcite high-energy holon-doublon pairs as a way to alter the magnetic free energy landscape and resulting phase diagram of the frustrated honeycomb magnet ??-RuCl3. The pair recombination through multimagnon emission is tracked through the time evo ...
Cavity quantum electrodynamics (QED) manipulates the coupling of light with matter, and allows several emitters to couple coherently with one light mode1. However, even in a many-body system, the light–matter coupling mechanism has so far been restricted t ...
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Exposing a molecule to an intense light pulse can create a nonstationary quantum state, thus launching correlated dynamics of electrons and nuclei. Although much had been achieved in the understanding of fundamental physics behind the electron-nuclear inte ...
SWISS CHEMICAL SOC2022
This thesis presents the first cavity quantum electrodynamics experiments performed with a degenerate gas of 6Li with strong atom-atom interactions. The first part of this manuscript describes the design and the building of the apparatus that has been e ...