A Route to Stabilize Uranium(II) and Uranium(I) Synthons in Multimetallic Complexes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The development of new processes for the selective and sustainable transformation of abundant small molecules constitutes one of the major research areas in inorganic and organometallic chemistry. These molecules as CO2, CO, N2 and H2 are abundant reservoi ...
In the last decades, the activation of small molecules has attracted increasing attention for their use as cheap and abundant feedstock. Low-oxidation state uranium complexes have displayed high reactivity towards small molecules thanks to their unique pro ...
Complexes of uranium in low oxidation state have shown the ability to activate non-reactive small molecules such as N-2. However, the multi-electron transfer required for such activation remains limited in uranium chemistry. Here, we review our recent rese ...
Multimetallic cooperativity is believed to play a key role in the cleavage of dinitrogen to nitrides (N3-), but the mechanism remains ambiguous due to the lack of isolated intermediates. Herein, we report the reduction of the complex [K-2{[U-V(OSi((OBu)-Bu ...
Knowledge of fundamental chemical properties of all environmentally relevant uranium species is essential to understand environmental uranium mobility and develop novel remediation strate-gies. A myriad of uranium(VI) and uranium(IV) compounds has been stu ...
Uranium (U) in situ bioremediation has been investigated as a cost-effective strategy to tackle U contamination in the subsurface. While uraninite was believed to be the only product of bioreduction, numerous studies have revealed that noncrystalline U(IV) ...
AMER CHEMICAL SOC2020
, ,
The synthesis and reactivity of uranium compounds supported by the tris-tert-butoxysiloxide ligand is surveyed. The multiple binding modes of the tert-butoxysiloxide ligand have proven very well suited to stabilize highly reactive homo- and heteropolymetal ...
2019
,
Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope ...
2021
The activation of small molecules is a paramount challenge in modern chemistry. The use of cheap and abundant molecules such as N2, H2, CO2, or CO as energy supplies or as precursors for fine chemicals production is highly desirable. In particular, the onl ...
Uranium (U) is a ubiquitous element in the Earth's crust at similar to 2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain ...