Mixed tensorIn tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.
Tensor fieldIn mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a pure number plus a direction, like velocity), a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space.
Recurrent neural networkA recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
Tensor contractionIn multilinear algebra, a tensor contraction is an operation on a tensor that arises from the natural pairing of a finite-dimensional vector space and its dual. In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression. The contraction of a single mixed tensor occurs when a pair of literal indices (one a subscript, the other a superscript) of the tensor are set equal to each other and summed over.
Symmetric tensorIn mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments: for every permutation σ of the symbols {1, 2, ..., r}. Alternatively, a symmetric tensor of order r represented in coordinates as a quantity with r indices satisfies The space of symmetric tensors of order r on a finite-dimensional vector space V is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V.
Kernel (linear algebra)In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically: The kernel of L is a linear subspace of the domain V.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Total orderIn mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation on some set , which satisfies the following for all and in : (reflexive). If and then (transitive). If and then (antisymmetric). or (strongly connected, formerly called total). Reflexivity (1.) already follows from connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders.
Tensor (intrinsic definition)In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multilinear concept. Their properties can be derived from their definitions, as linear maps or more generally; and the rules for manipulations of tensors arise as an extension of linear algebra to multilinear algebra. In differential geometry an intrinsic geometric statement may be described by a tensor field on a manifold, and then doesn't need to make reference to coordinates at all.
Lexicographic orderIn mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set. There are several variants and generalizations of the lexicographical ordering. One variant applies to sequences of different lengths by comparing the lengths of the sequences before considering their elements.