Publication

Partial Information Sharing Over Social Learning Networks

Ali H. Sayed, Virginia Bordignon
2023
Journal paper
Abstract

This work addresses the problem of sharing partial information within social learning strategies. In social learning, agents solve a distributed multiple hypothesis testing problem by performing two operations at each instant: first, agents incorporate information from private observations to form their beliefs over a set of hypotheses; second, agents combine the entirety of their beliefs locally among neighbors. Within a sufficiently informative environment and as long as the connectivity of the network allows information to diffuse across agents, these algorithms enable agents to learn the true hypothesis. Instead of sharing the entirety of their beliefs, this work considers the case in which agents will only share their beliefs regarding one hypothesis of interest, with the purpose of evaluating its validity, and draws conditions under which this policy does not affect truth learning. We propose two approaches for sharing partial information, depending on whether agents behave in a self-aware manner or not. The results show how different learning regimes arise, depending on the approach employed and on the inherent characteristics of the inference problem. Furthermore, the analysis interestingly points to the possibility of deceiving the network, as long as the evaluated hypothesis of interest is close enough to the truth.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.