**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Localizing Unsynchronized Sensors With Unknown Sources

Abstract

We propose a method for sensor array self-localization using a set of sources at unknown locations. The sources produce signals whose times of arrival are registered at the sensors. We look at the general case where neither the emission times of the sources nor the reference time frames of the receivers are known. Unlike previous work, our method directly recovers the array geometry, instead of first estimating the timing information. The key component is a new loss function which is insensitive to the unknown timings. We cast the problem as a minimization of a non-convex functional of the Euclidean distance matrix of microphones and sources subject to certain non-convex constraints. After convexification, we obtain a semidefinite relaxation which gives an approximate solution; subsequent refinement on the proposed loss via the Levenberg-Marquardt scheme gives the final locations. Our method achieves state-of-the-art performance in terms of reconstruction accuracy, speed, and the ability to work with a small number of sources and receivers. It can also handle missing measurements and exploit prior geometric and temporal knowledge, for example if either the receiver offsets or the emission times are known, or if the array contains compact subarrays with known geometry.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (24)

Related publications (34)

Related MOOCs (1)

Convex optimization

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

Constraint (mathematics)

In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. The following is a simple optimization problem: subject to and where denotes the vector (x1, x2). In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function).

Nonlinear programming

In mathematics, nonlinear programming (NLP) is the process of solving an optimization problem where some of the constraints or the objective function are nonlinear. An optimization problem is one of calculation of the extrema (maxima, minima or stationary points) of an objective function over a set of unknown real variables and conditional to the satisfaction of a system of equalities and inequalities, collectively termed constraints. It is the sub-field of mathematical optimization that deals with problems that are not linear.

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...

Volkan Cevher, Ahmet Alacaoglu

In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution with convexity and linear convergenc ...

Volkan Cevher, Maria-Luiza Vladarean

We consider the problem of finding a saddle point for the convex-concave objective $\min_x \max_y f(x) + \langle Ax, y\rangle - g^*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth. We propose an ...

2021