Publication

Quantum mixed state compiling

Zoë Holmes
2023
Journal paper
Abstract

The task of learning a quantum circuit to prepare a given mixed state is a fundamental quantum subroutine. We present a variational quantum algorithm (VQA) to learn mixed states which is suitable for near-term hardware. Our algorithm represents a generalization of previous VQAs that aimed at learning preparation circuits for pure states. We consider two different ansatze for compiling the target state; the first is based on learning a purification of the state and the second on representing it as a convex combination of pure states. In both cases, the resources required to store and manipulate the compiled state grow with the rank of the approximation. Thus, by learning a lower rank approximation of the target state, our algorithm provides a means of compressing a state for more efficient processing. As a byproduct of our algorithm, one effectively learns the principal components of the target state, and hence our algorithm further provides a new method for principal component analysis. We investigate the efficacy of our algorithm through extensive numerical implementations, showing that typical random states and thermal states of many body systems may be learnt this way. Additionally, we demonstrate on quantum hardware how our algorithm can be used to study hardware noise-induced states.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Quantum programming
Quantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment. Quantum circuit algorithms can be implemented on integrated circuits, conducted with instrumentation, or written in a programming language for use with a quantum computer or a quantum processor. With quantum processor based systems, quantum programming languages help express quantum algorithms using high-level constructs.
Principal component analysis
Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a statistical technique for reducing the dimensionality of a dataset. This is accomplished by linearly transforming the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data.
Quantum circuit
In quantum information theory, a quantum circuit is a model for quantum computation, similar to classical circuits, in which a computation is a sequence of quantum gates, measurements, initializations of qubits to known values, and possibly other actions. The minimum set of actions that a circuit needs to be able to perform on the qubits to enable quantum computation is known as DiVincenzo's criteria. Circuits are written such that the horizontal axis is time, starting at the left hand side and ending at the right.
Show more
Related publications (40)

Scalable Quantum Algorithms for Noisy Quantum Computers

Julien Sebastian Gacon

Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
EPFL2024

Quantum Error Correction and Simulation in Open Bosonic Systems

David Schlegel

Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
EPFL2024

Optimizing Quantum Compilers: Efficient and Effective Algorithms

Fereshte Mozafari Ghoraba

Quantum computing has made significant progress in recent years, with Google and IBM releasing quantum computers with 72 and 50 qubits, respectively. Google has also achieved quantum supremacy with its 54-qubit device, and IBM has announced the release of ...
EPFL2023
Show more
Related MOOCs (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.