Publication

FIB-Fabrication of Resonating Cantilevers to Explore Symmetry-Breaking in Quantum Materials

Amelia Emily-Kay Estry
2023
EPFL thesis
Abstract

Scientific progress and technological advancements on novel materials are often deterred by limitations on size and quality of samples. Materials with electronic phenomena attractive for applications, and presenting many open scientific questions, are often challenging to grow. Surpassing these barriers for technological applications, or for explorations of microscopic samples, necessitates new approaches. One property important for applications and fundamental science is elasticity. The elastic tensor is defined by attractive bonds between ions and encodes the symmetries of the material, making elasticity measurements valuable for insight into the symmetries of the electronic state. Unfortunately, elasticity experiments have so far been restricted to materials that can be grown into large, clean samples. The goal of this thesis is to bridge this gap, developing a fabrication process to construct resonators directly from novel materials. This new technique uses a Focused Ion Beam (FIB) which can selectively etch or deposit with sub-µm precision. A robust workflow was developed to carve samples with length scales as small as ∌10µm into cantilevers. Because mechanical resonance modes are dependent on geometry and elastic properties, by controlling cantilever geometry, elasticity can be explored with exquisite sensitivity by measuring resonance frequencies. One promising application is the study of quantum materials, in which electronic correlations give rise to remarkable phenomena such as high-temperature (high-Tc ) superconductivity (SC). Measurements were conducted to explore electronic phenomena in the rare-earth nickelates, and the high-Tc superconductors of the cuprates and iron pnictides.This project is intended to accelerate the transition process needed to implement novel electronic materials into research and technology. The decades of materials research ordinarily spent on optimizing growth processes can be circumvented, focusing promptly on the microparticles available. The most fundamental application of this technique is elasticity studies on size and quality-limited samples. For large samples, microscale elasticity can be vastly different than macroscale elasticity. Incorporating these materials into devices relies on knowledge of their microscale elasticity. This technique is flexible and can be used for a wide range of materials and to create complex, 3D structures to explore functionality of different geometries. FIB-fabrication compared favorably to standard techniques with FIBed Si cantilevers showing deviations from literature values as low as 8% and the relative frequency resolution is superb. On cantilevers of SmFeAs(O,F) — a family that has one of the highest Tc within the iron-based superconductors — a giant anomalous softening in the elastic shear component was observed. This softening has been reported in the lower-Tc BaFe2As2 and is associated with a nematic phase, which involves the breaking of rotational symmetry via electronic interactions. This state occurs near SC, raising the question of their interplay and if they share a common origin. These measurements are the first observations of nematicity in this high-Tc family; although remarkably, the energy of the electronic-lattice coupling is weaker than in the lower-Tc families. These results show the potential of this technique in expounding upon the materials that can be studied to yield further insight into intricate electronic correlations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
High-temperature superconductivity
High-temperature superconductors (abbreviated high-Tc or HTS) are defined as materials with critical temperature (the temperature below which the material behaves as a superconductor) above , the boiling point of liquid nitrogen. They are only "high-temperature" relative to previously known superconductors, which function at even colder temperatures, close to absolute zero. The "high temperatures" are still far below ambient (room temperature), and therefore require cooling.
Elastic modulus
An elastic modulus (also known as modulus of elasticity) is the unit of measurement of an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. The elastic modulus of an object is defined as the slope of its stress–strain curve in the elastic deformation region: A stiffer material will have a higher elastic modulus. An elastic modulus has the form: where stress is the force causing the deformation divided by the area to which the force is applied and strain is the ratio of the change in some parameter caused by the deformation to the original value of the parameter.
Elasticity tensor
The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. Other names are elastic modulus tensor and stiffness tensor. Common symbols include and . The defining equation can be written as where and are the components of the Cauchy stress tensor and infinitesimal strain tensor, and are the components of the elasticity tensor. Summation over repeated indices is implied. This relationship can be interpreted as a generalization of Hooke's law to a 3D continuum.
Show more
Related publications (39)

Solids that are also liquids: elastic tensors of superionic materials

Nicola Marzari, Tommaso Chiarotti, Giuliana Materzanini

Superionics are fascinating materials displaying both solid- and liquid-like characteristics: as solids, they respond elastically to shear stress; as liquids, they display fast-ion diffusion at normal conditions. In addition to such scientific interest, su ...
NATURE PORTFOLIO2023

Game changers in science and technology- now and beyond

The recent devastating pandemic has drastically reminded humanity of the importance of constant scientific and technological progress. A strong interdisciplinary dialogue between academic and industrial scientists of various specialties, entrepreneurs, man ...
ELSEVIER SCIENCE INC2023

Controlling superconductivity of CeIrIn5 microstructures by substrate selection

Philip Johannes Walter Moll, Maja Deborah Bachmann, Matthias Carsten Putzke, Chunyu Guo, Maarten Ruud van Delft, Joshua Alan Wolfe Straquadine

Superconductor/metal interfaces are usually fabricated in heterostructures that join these dissimilar materials. A conceptually different approach has recently exploited the strain sensitivity of heavy-fermion superconductors, selectively transforming regi ...
AIP Publishing2022
Show more
Related MOOCs (10)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.