Publication

Regularization for distributionally robust state estimation and prediction

Abstract

The increasing availability of sensing techniques provides a great opportunity for engineers to design state estimation methods, which are optimal for the system under observation and the observed noise patterns. However, these patterns often do not fulfill the assumptions of existing methods. We provide a direct method using samples of the noise to create a moving horizon observer for linear time-varying and nonlinear systems, which is optimal under the empirical noise distribution. Moreover, we show how to enhance the observer with distributional robustness properties in order to handle unmodeled components in the noise profile, as well as different noise realizations. We prove that, even though the design of distributionally robust estimators is a complex minmax problem over an infinite-dimensional space, it can be transformed into a regularized linear program using a system level synthesis approach. Numerical experiments with the Van der Pol oscillator show the benefits of not only using empirical samples of the noise to design the state estimator, but also of adding distributional robustness. We show that our method can significantly outperform state-of-the-art approaches under challenging noise distributions, including multi-modal and deterministic components.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Robust statistics
Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution.
Estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the sample mean is a commonly used estimator of the population mean. There are point and interval estimators. The point estimators yield single-valued results. This is in contrast to an interval estimator, where the result would be a range of plausible values.
Bayes estimator
In estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Show more
Related publications (55)

A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set

Daniel Kuhn, Yves Rychener, Viet Anh Nguyen

The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...
2024

Generalized Bradley-Terry Models for Score Estimation from Paired Comparisons

Julien René Pierre Fageot, Sadegh Farhadkhani, Oscar Jean Olivier Villemaud, Le Nguyen Hoang

Many applications, e.g. in content recommendation, sports, or recruitment, leverage the comparisons of alternatives to score those alternatives. The classical Bradley-Terry model and its variants have been widely used to do so. The historical model conside ...
AAAI Press2024

Regularization for distributionally robust state estimation and prediction

Jean-Sébastien Hubert Brouillon

Simulation script for the paper "Regularization for distributionally robust state estimation and prediction". Run tests/test_cdc.py to reproduce results. Extended versions can be found at https://github.com/DecodEPFL/. ...
EPFL Infoscience2023
Show more
Related MOOCs (6)
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.