End-to-End Learning for Stochastic Optimization: A Bayesian Perspective
Related publications (80)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Massive molecular testing for COVID-19 has been pointed out as fundamental to moderate the spread of the pandemic. Pooling methods can enhance testing efficiency, but they are viable only at low incidences of the disease. We propose Smart Pooling, a machin ...
Animals both explore and avoid novel objects in the environment, but the neural mechanisms that underlie these behaviors and their dynamics remain uncharacterized. Here, we used multi-point tracking (DeepLabCut) and behavioral segmentation (MoSeq) to chara ...
We study supervised learning problems for predicting properties of individuals who belong to one of two demographic groups, and we seek predictors that are fair according to statistical parity. This means that the distributions of the predictions within th ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks sti ...
"I choose this restaurant because they have vegan sandwiches" could be a typical explanation we would expect from a human. However, current Reinforcement Learning (RL) techniques are not able to provide such explanations, when trained on raw pixels. RL alg ...
We propose a metric for evaluating the generalization ability of deep neural networks trained with mini-batch gradient descent. Our metric, called gradient disparity, is the l2 norm distance between the gradient vectors of two mini-batches drawn from the t ...
A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learni ...