Publication

Hydro-mechanichal characterisation of bentonite/steel interfaces

Abstract

The hydromechanical response of a Wyoming-type bentonite (MX-80) and its interface with steel was studied in terms of shear resistance under different hydration levels. A series of shear tests under constant normal stress were performed in total suction controlled conditions. In the case of bentonite samples, higher shear resistance was obtained for higher levels of applied suction. The shear properties of the bentonite/steel interface were overall lower than the internal properties of the bentonite, and they were not affected in a significant way by the hydration level. All samples presented a compactive response during shearing.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Triaxial shear test
A triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil (e.g., sand, clay) and rock, and other granular materials or powders. There are several variations on the test. In a triaxial shear test, stress is applied to a sample of the material being tested in a way which results in stresses along one axis being different from the stresses in perpendicular directions.
Shear stress
Shear stress (often denoted by τ (Greek: tau)) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. The formula to calculate average shear stress is force per unit area.: where: τ = the shear stress; F = the force applied; A = the cross-sectional area of material with area parallel to the applied force vector.
Direct shear test
A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil or rock material, or of discontinuities in soil or rock masses. The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990, respectively. For rock the test is generally restricted to rock with (very) low shear strength. The test is, however, standard practice to establish the shear strength properties of discontinuities in rock.
Show more
Related publications (37)

Shear strength and shear stiffness analysis of compacted Wyoming-type bentonite

Alessio Ferrari

Wyoming-type bentonite is one of the materials to be used as part of the Engineered Barrier System (EBS) in deep geological disposal facilities for the safe disposal of spent nuclear fuel.In the KBS-3 type repository, the canisters containing the spent fue ...
ELSEVIER2023

Drained Clay-Pipe Interface Resistance at Low Normal Stresses and Elevated Temperatures

Offshore pipelines that transport hydrocarbons under high pressure and high temperature are usually thermally insulated to maintain an elevated temperature and prevent any heat loss to the surroundings. However, the temperatures at the outer-wall of the pi ...
AMER SOC CIVIL ENGINEERS2023

Fault roughness’s influence on experimental fault mechanical behavior

Brice Tanguy Alphonse Lecampion, Marie Estelle Solange Violay, Barnaby Padraig Fryer, Seyyedmaalek Momeni, François Xavier Thibault Passelègue, Carolina Giorgetti

Fault slip behavior and earthquake nucleation are often framed within the context of velocity-dependent friction, ranging from velocity-strengthening to velocity-weakening behavior. Previous studies have shown that fault roughness controls the fault slip b ...
2022
Show more
Related MOOCs (2)
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s