Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Explainable Artificial Intelligence (XAI) plays a crucial role in enabling human understanding and trust in deep learning systems, often defined as determining which features are most important to a model's prediction. As models get larger, more ubiquitous, and pervasive in aspects of daily life, explainability is necessary to avoid or minimize adverse effects of model mistakes. Unfortunately, current approaches in human-centric XAI (e.g. predictive tasks in healthcare, education, or personalized ads) tend to rely on a single explainer. This is a particularly concerning trend when considering that recent work has identified systematic disagreement in explainability methods when applied to the same points and underlying black-box models. In this paper, we therefore present a call for action to address the limitations of current state-of-the-art explainers. We propose to shift from post-hoc explainability to designing interpretable neural network architectures; moving away from approximation techniques in human-centric and high impact applications. We identify five needs of human-centric XAI (real-time, accurate, actionable, human-interpretable, and consistent) and propose two schemes for interpretable-by-design neural network workflows (adaptive routing for interpretable conditional computation and diagnostic benchmarks for iterative model learning). We postulate that the future of human-centric XAI is neither in explaining black-boxes nor in reverting to traditional, interpretable models, but in neural networks that are intrinsically interpretable.
, ,