AI alignmentIn the field of artificial intelligence (AI), AI alignment research aims to steer AI systems towards humans' intended goals, preferences, or ethical principles. An AI system is considered aligned if it advances the intended objectives. A misaligned AI system pursues some objectives, but not the intended ones. It can be challenging for AI designers to align an AI system because it can be difficult for them to specify the full range of desired and undesired behaviors.
High-performance computingHigh-performance computing (HPC) uses supercomputers and computer clusters to solve advanced computation problems. HPC integrates systems administration (including network and security knowledge) and parallel programming into a multidisciplinary field that combines digital electronics, computer architecture, system software, programming languages, algorithms and computational techniques. HPC technologies are the tools and systems used to implement and create high performance computing systems.
Bit arrayA bit array (also known as bitmask, bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure. A bit array is effective at exploiting bit-level parallelism in hardware to perform operations quickly. A typical bit array stores kw bits, where w is the number of bits in the unit of storage, such as a byte or word, and k is some nonnegative integer. If w does not divide the number of bits to be stored, some space is wasted due to internal fragmentation.
Northbridge (computing)In computing, a northbridge (also host bridge, or memory controller hub) is one of two chips comprising the core logic chipset architecture on a PC motherboard. A northbridge is connected directly to a CPU via the front-side bus (FSB) to handle high-performance tasks, and is usually used in conjunction with a slower southbridge to manage communication between the CPU and other parts of the motherboard.
Data accessData access is a generic term referring to a process which has both an IT-specific meaning and other connotations involving access rights in a broader legal and/or political sense. In the former it typically refers to software and activities related to storing, retrieving, or acting on data housed in a database or other repository. Two fundamental types of data access exist: sequential access (as in magnetic tape, for example) random access (as in indexed media) Data access crucially involves authorization to access different data repositories.
Dvorak keyboard layoutDvorak ˈdvɔːræk is a keyboard layout for English patented in 1936 by August Dvorak and his brother-in-law, William Dealey, as a faster and more ergonomic alternative to the QWERTY layout (the de facto standard keyboard layout). Dvorak proponents claim that it requires less finger motion and as a result reduces errors, increases typing speed, reduces repetitive strain injuries, or is simply more comfortable than QWERTY.
Vector algebraIn mathematics, vector algebra may mean: Linear algebra, specifically the basic algebraic operations of vector addition and scalar multiplication; see vector space. The algebraic operations in vector calculus, namely the specific additional structure of vectors in 3-dimensional Euclidean space of dot product and especially cross product. In this sense, vector algebra is contrasted with geometric algebra, which provides an alternative generalization to higher dimensions.
QWERTYQWERTY ('kwɜːrti) is a keyboard layout for Latin-script alphabets. The name comes from the order of the first six keys on the top left letter row of the keyboard ( ). The QWERTY design is based on a layout created for the Sholes and Glidden typewriter and sold to E. Remington and Sons in 1873. It became popular with the success of the Remington No. 2 of 1878, and remains in ubiquitous use. Typewriter and Sholes and Glidden typewriter The QWERTY layout was devised and created in the early 1870s by Christopher Latham Sholes, a newspaper editor and printer who lived in Kenosha, Wisconsin.
Sequential accessSequential access is a term describing a group of elements (such as data in a memory array or a disk file or on magnetic-tape data storage) being accessed in a predetermined, ordered sequence. It is the opposite of random access, the ability to access an arbitrary element of a sequence as easily and efficiently as any other at any time. Sequential access is sometimes the only way of accessing the data, for example if it is on a tape. It may also be the access method of choice, for example if all that is wanted is to process a sequence of data elements in order.
Blocking (computing)In computing, a process is an instance of a computer program that is being executed. A process always exists in exactly one process state. A process that is blocked is one that is waiting for some event, such as a resource becoming available or the completion of an I/O operation. In a multitasking computer system, individual tasks, or threads of execution, must share the resources of the system. Shared resources include: the CPU, network and network interfaces, memory and disk.