**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# The Sparsity of Cycle Spinning for Wavelet-Based Solutions of Linear Inverse Problems

Abstract

The usual explanation of the efficacy of wavelet-based methods hinges on the sparsity of many real-world objects in the wavelet domain. Yet, standard wavelet-shrinkage techniques for sparse reconstruction are not competitive in practice, one reason being that the lack of shift-invariance of the wavelet transform produces blocky artifacts. The standard remedy is cycle spinning, which results in a substantial reduction of these artifacts. In this letter, we propose a theoretical investigation of the sparsity of solutions to the cycle-spinning variant of wavelet-based resolutions of linear inverse problems. We derive a representer theorem that provides a complete characterization of the solution set. Our theorem indicates that the solutions are typically not sparse, where sparsity is measured with respect to the wavelet dictionary. This exposes that the role of sparsity in the success of wavelet-based solutions of linear inverse problems requires further investigation. We corroborate our theoretical results with numerical examples for the problem of image denoising.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (6)

Related publications (46)

Related concepts (32)

Digital Signal Processing [retired]

The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a

Digital Signal Processing

Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Wavelet

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of Middle C and a short duration of roughly one tenth of a second.

Wavelet transform

In mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.

Morlet wavelet

In mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.

Fabio Nobile, Simone Brugiapaglia

We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection–diffusion–reaction equations based on the COmpRessed SolvING (CORSING) paradigm. Combining the Petrov–Galerkin technique with the compressed ...

2020Jean-Louis Scartezzini, Jérôme Henri Kämpf, Yujie Wu

The bidirectional transmittance distribution function (BTDF), which is used to characterize the light transmission of a complex fenestration system (CFS), commonly involves bulky volume of data that can be a challenge to data storage and transmission in li ...

2019Jean-Louis Scartezzini, Jérôme Henri Kämpf, Yujie Wu

The bidirectional transmittance distribution function (BTDF), which is used to characterize the light transmission of a complex fenestration system (CFS), commonly involves bulky volume of data that can be a challenge to data storage and transmission in li ...

2019