Publication

Brain-controlled spinal cord stimulation to restore mobility after spinal cord injury.

Abstract

Spinal Cord Injury (SCI) affects almost 500,000 people every year, causing complete paralysis of both legs in severe cases, with no current treatment perspective. However, new neuroengineering technologies, such as the Brain Spine Interface (BSI), have emerged to potentially alleviate paralysis and promote neurological recovery. The BSI aims to establish a digital bridge between the motor cortex and dormant neurons in the spinal cord, enabling volitional control over muscle activity, restoring a more natural and adaptive control of standing and walking in people with paralysis. This technology could have a significant impact on the human, societal, and economic costs associated with SCI.As the first part of this thesis, an advanced framework and machine learning algorithms were developed to perform online decoding of locomotor features from a non-invasive Electroencephalography (EEG)-based mobile decoding platform High-resolution recordings showed event-related desynchronization and synchronization patterns in beta and gamma bands time-locked to the gait cycle in source-localized sensorimotor areas, as previously described in the literature.The possibility of developing a BSI from EEG recordings was validated. The potential of this platform for neurorehabilitation in SCI participants was investigated to trigger EES programs to restore walking. However, the platform's limitations were observed due to low signal-to-noise ratio, exogenous signals, and low performance in classifying gait events, making it insufficient for restoring mobility.The EEG-based Brain Spine Interface was found insufficient to restore locomotion in SCI participants, but its potential for single joint movement was questioned. A simplified setup was developed and tested in four SCI participants. After 20 training sessions, the decoding performance was excellent, with up to 100% accuracy in some tasks. Participants reported positive feedback and a sensation of regaining control of their paralyzed limbs. Although clinical outcomes were not conclusive, participants were enthusiastic about the potential of the platform for rehabilitation training.We investigated using ECoG recordings and spinal cord stimulation as a BSI for severe SCI patients. A clinical trial was conducted using the fully implantable epidural ECoG-based system. Motor intentions was decoded from ECoG recordings and translated into commands to modulate EES. The BSI allowed an individual with chronic tetraplegia to stand, walk, climb stairs, and traverse complex terrains, restoring natural control of movement after paralysis. At the end of this thesis, we report for the first time the restoration of communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Spinal cord injury
A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cord below the level of the injury. Injury can occur at any level of the spinal cord and can be complete, with a total loss of sensation and muscle function at lower sacral segments, or incomplete, meaning some nervous signals are able to travel past the injured area of the cord up to the Sacral S4-5 spinal cord segments.
Spinal cord stimulator
A spinal cord stimulator (SCS) or dorsal column stimulator (DCS) is a type of implantable neuromodulation device (sometimes called a "pain pacemaker") that is used to send electrical signals to select areas of the spinal cord (dorsal columns) for the treatment of certain pain conditions. SCS is a consideration for people who have a pain condition that has not responded to more conservative therapy. There are also spinal cord stimulators under research and development that could enable patients with spinal cord injury to walk again via epidural electrical stimulation (EES).
Spinal cord injury research
Spinal cord injury research seeks new ways to cure or treat spinal cord injury in order to lessen the debilitating effects of the injury in the short or long term. There is no cure for SCI, and current treatments are mostly focused on spinal cord injury rehabilitation and management of the secondary effects of the condition. Two major areas of research include neuroprotection, ways to prevent damage to cells caused by biological processes that take place in the body after the injury, and neuroregeneration, regrowing or replacing damaged neural circuits.
Show more
Related publications (101)

Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial

Grégoire Courtine, Jordan Squair, Markus Maximilian Rieger

Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve a ...
Nature Portfolio2024

System for control of spasticity

Grégoire Courtine, Jocelyne Bloch, Robin Jonathan Demesmaeker, Fabien Bertrand Paul Wagner, Karen Minassian, Salif Axel Komi

The present invention relates to a neuromodulation/neurostimulation system (10) for the treatment of spasticity in a mammal, said system (10) comprising: - at least one control unit (12) configured and arranged to provide stimulation data, and - at least o ...
2024

Walking naturally after spinal cord injury using a brain-spine interface

Grégoire Courtine, Jocelyne Bloch, Léonie Asboth, Robin Jonathan Demesmaeker, Anne Marie Lucienne Watrin, Sergio Daniel Hernandez, Henri Charles Alexandre Lorach, Jimmy James Ravier, Grégory Didier Dumont, Félix Antoine Martel, Laure Coquoz, Valeria Spagnolo, Thibault Jean Etienne Collin, Icare Sakr, Lucas Struber, Salif Axel Komi, Molywan Vat, Carmina Andrea Galvez Solano, Edeny Baaklini, Cathal John Harte

A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis(1,2). Here, we restored this communication with a digital bridge between the brain and spinal cord that enable ...
NATURE PORTFOLIO2023
Show more
Related MOOCs (27)
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.