Publication

Center-aware Adversarial Augmentation for Single Domain Generalization

Mathieu Salzmann, Zhiye Wang
2023
Conference paper
Abstract

Domain generalization (DG) aims to learn a model from multiple training (i.e., source) domains that can generalize well to the unseen test (i.e., target) data coming from a different distribution. Single domain generalization (SingleDG) has recently emerged to tackle a more challenging, yet realistic setting, where only one source domain is available at training time. The existing Single-DG approaches typically are based on data augmentation strategies and aim to expand the span of source data by augmenting out-ofdomain samples. Generally speaking, they aim to generate hard examples to confuse the classifier. While this may make the classifier robust to small perturbation, the generated samples are typically not diverse enough to mimic a large domain shift, resulting in sub-optimal generalization performance. To alleviate this, we propose a centeraware adversarial augmentation technique that expands the source distribution by altering the source samples so as to push them away from the class centers via a novel angular center loss. We conduct extensive experiments to demonstrate the effectiveness of our approach on several benchmark datasets for Single-DG and show that our method outperforms the state-of-the-art in most cases.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.