Membrane potential dynamics of excitatory and inhibitory neurons in mouse barrel cortex during active whisker sensing
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The neocortex is the most distinctive feature of the mammalian brain and it is considered to be the substrate of high-order cognitive functions. The nature and the arrangement of the diverse neuronal elements constituting its multiple areas have received l ...
The motor systems of the mammalian brain are a remarkable product of many millions of years of evolution. It is the motor systems that make us and other mammals mobile, that guide our actions in response to sensory information and conversely modulate the v ...
Intracellular recordings of membrane potential in vitro have defined fundamental properties of synaptic communication. Much less is known about the properties of synaptic connectivity and synaptic transmission in vivo. Here, we combined single-cell opto-ge ...
The thick-tufted layer 5 (TTL5) pyramidal neuron is one of the most extensively studied neuron types in the mammalian neocortex and has become a benchmark for understanding information processing in excitatory neurons. By virtue of having the widest local ...
GABAergic neurons are a minor fraction of the neocortical neuronal population, but they are highly diverse in their features. The GABAergic neurons can be divided into three largely non-overlapping groups, defined through the expression of ionotropic serot ...
Inhibitory GABAergic interneurons have been extensively studied but their contribution to circuit dynamics remain poorly understood. Although it has been suggested that interneurons, especially those belonging to the same subclass, synchronize their activi ...
Goal-directed sensorimotor transformation drives important aspects of mammalian behavior. The striatum is thought to play a key role in reward-based learning and action selection, receiving glutamatergic sensorimotor signals and dopaminergic reward signals ...
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than roden ...
Synaptic neurotransmission is modified at cortical connections throughout life. Varying the amplitude of the postsynaptic response is one mechanism that generates flexible signaling in neural circuits. The timing of the synaptic response may also play a ro ...
Computations in neocortical circuits are predominantly driven by synaptic integration of excitatory glutamatergic and inhibitory GABAergic inputs. New optical, electrophysiological, and genetic methods allow detailed in vivo investigation of the superficia ...