Performance assessment of a tightly baffled, long-legged divertor configuration in TCV with SOLPS-ITER
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
The SMall Aspect Ratio Tokamak (SMART) under commissioning at the University of Seville, Spain, aims to explore confinement properties and possible advantages in confinement for compact/spherical tokamaks operating at negative vs. positive triangularity. T ...
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
The overall performance of a tokamak strongly depends on phenomena that take place in a thin region between the main plasma and the vessel wall, which is denoted as tokamak boundary. In fact, the formation of transport barriers in this region can significa ...
EPFL2022
Substantial power dissipation in the edge plasma is required for the safe operation of ITER and next-step fusion reactors, otherwise unmitigated heat fluxes at the divertor plasma-facing components (PFCs) would easily exceed their material limits. Traditio ...
2021
, , ,
This work presents a fast and robust method for optimizing the stationary radial distribution of temperature, density and parallel current density in a tokamak plasma and its application to first-principle-based modeling of the ITER hybrid scenario. A new ...
2021
, , ,
This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique ...
AMER INST PHYSICS2021
Thermonuclear controlled fusion is a promising answer to the current energy and climate issues, providing a safe carbon-free source of energy which is virtually inexhaustible. In magnetic confinement thermonuclear fusion based on tokamak reactors, hydrogen ...
EPFL2021
, , , ,
In magnetic confinement thermonuclear fusion the exhaust of heat and particles from the core remains a major challenge. Heat and particles leaving the core are transported via open magnetic field lines to a region of the reactor wall, called the divertor. ...
Plasma exhaust has been identified as a major challenge towards the realisation of magnetic confinement fusion. To mitigate the risk that the single null divertor (SND) with a high radiation fraction in the scrape-of-layer (SOL) adopted for ITER will not e ...