Publication

Inverse Reinforcement Learning of Pedestrian-Robot Coordination

Aude Billard, David Julian Gonon
2023
Journal paper
Abstract

We apply inverse reinforcement learning (IRL) with a novel cost feature to the problem of robot navigation in human crowds. Consistent with prior empirical work on pedestrian behavior, the feature anticipates collisions between agents. We efficiently learn cost functions in continuous space from high-dimensional examples of public crowd motion data, assuming locally optimal examples. We evaluate the accuracy and predictive power of the learned models on test examples that we attempt to reproduce by optimizing the learned cost functions. We show that the predictions of our models outperform a recent related approach from the literature. The learned cost functions are incorporated into an optimal controller for a robotic wheelchair. We evaluate its performance in qualitative experiments where it autonomously travels between pedestrians, which it perceives through an on-board tracking system. The results show that our approach often generates appropriate motion plans that efficiently complement the pedestrians' motions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Artificial neural network
Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Learning classifier system
Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions (e.g. behavior modeling, classification, data mining, regression, function approximation, or game strategy).
Show more
Related publications (36)

Dynamic Voxels Based on Ego-Conditioned Prediction: An Integrated Spatio-Temporal Framework for Motion Planning

Alexandre Massoud Alahi, Ting Zhang

Prediction is a vital component of motion planning for autonomous vehicles (AVs). By reasoning about the possible behavior of other target agents, the ego vehicle (EV) can navigate safely, efficiently, and politely. However, most of the existing work overl ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Geometric and Learning Methods for Robots to Navigate in Human Crowds with Application to Smart Mobility Devices

David Julian Gonon

The thesis at hand is concerned with robots' navigation in human crowds. Specifically, methods are developed for planning a mobile robot's local motion between pedestrians, and they are evaluated in experiments where a robot interacts with real pedestrians ...
EPFL2023

Implicit Distance Functions: Learning and Applications in Robotics

Mikhail Koptev

In this thesis, we address the complex issue of collision avoidance in the joint space of robots. Avoiding collisions with both the robot's own body parts and obstacles in the environment is a critical constraint in motion planning and is crucial for ensur ...
EPFL2023
Show more
Related MOOCs (21)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.