Publication

Bioengineering human mini-intestines with in vivo-like complexity and function

Related publications (58)

Accessible and highly observable gastrointestinal organoid model systems for studying host-pathogen interactions

Moritz Hofer

Traditional cell cultures have long been fundamental to biological research, offering an alternative to animal models burdened by ethical constraints and procedural intricacies, often lacking relevance to human physiology and disease. Moreover, their inabi ...
EPFL2024

Bioengineering functional organoid models across scales

Tania Hübscher

The last two decades have seen the development of organoid models for many different tissues and organs. Organoids are three-dimensional organ-mimetics derived from stem or progenitor cells comprising various specialized cell types, resembling the architec ...
EPFL2024

Engineering hydrogel microenvironments for epithelial organoid culture

Antonius Chrisnandy

Organoids, miniature tissues generated from self-organizing stem cells within three-dimensional (3D) extracellular matrices (ECM), have opened up exciting possibilities for in vitro studies of complex physiological processes. A key factor in the success of ...
EPFL2024

Bioengineered Tubular Biliary Organoids

Matthias Lütolf, Bilge Sen Elçi, Saba Rezakhani, Mikhail Nikolaev

Liver organoids have emerged as promising in vitro models for toxicology, drug discovery, and disease modeling. However, conventional 3D epithelial organoid culture systems suffer from significant drawbacks, including limited culture duration, a nonphysiol ...
Hoboken2024

Annotation of spatially resolved single-cell data with STELLAR

Maria Brbic

Accurate cell-type annotation from spatially resolved single cells is crucial to understand functional spatial biology that is the basis of tissue organization. However, current computational methods for annotating spatially resolved single-cell data are t ...
2022

Organoids as tools for fundamental discovery and translation-A Keystone Symposia report

Matthias Lütolf

Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to ...
WILEY2022

Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes

Ece Yildiz

In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study invest ...
WILEY-V C H VERLAG GMBH2022

Multiscale light-sheet organoid imaging framework

Petr Strnad, Andrea Boni, Raphaël Ortiz

Live imaging of organoid growth remains a challenge: it requires long-term imaging of several samples simultaneously and dedicated analysis pipelines. Here the authors report an experimental and image processing framework to turn long-term light-sheet imag ...
NATURE PORTFOLIO2022

Developing new tools to study and program cell fate at the single-cell level

Marjan Biocanin

Single-cell transcriptomics (scRNA-seq) started a technological revolution in biology by enabling through the plethora of methods to assess a molecular state of the cell on systems level without the strict necessity of the prior knowledge of the cell state ...
EPFL2021

Intestinal organoid cocultures with microbes

Devanjali Dutta

This protocol comprises various methods to coculture organoids (particularly human small intestinal and colon organoids) with microbes, including microinjection into the lumen and periphery of 3D organoids and exposure of organoids to microbes in a 2D laye ...
NATURE PORTFOLIO2021

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.