Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width are proportionally large and propose a closed-form expression for the Bayes-optimal test error, for regression and classification tasks. We further compute closed-form expressions for the test errors of ridge regression, kernel and random features regression. We find, in particular, that optimally regularized ridge regression, as well as kernel regression, achieve Bayes-optimal performances, while the logistic loss yields a near-optimal test error for classification. We further show numerically that when the number of samples grows faster than the dimension, ridge and kernel methods become suboptimal, while neural networks achieve test error close to zero from quadratically many samples.
Jean-Paul Richard Kneib, Emma Elizabeth Tolley, Tianyue Chen, Michele Bianco