Hemodynamic effects of a dielectric elastomer augmented aorta on aortic wave intensity: An in-vivo study
Related publications (64)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We investigated how parameters describing the heart and the arterial system contribute to the systolic and diastolic pressures (Ps and Pd, respectively) and stroke volume (SV). We have described the heart by the varying-elastance model with six parameters ...
We developed a new method to determine the location and importance of reflection sites in the arterial system. The method is based on the decomposition of the aortic pressure wave into its forward and backward components, and it provides the reflection pro ...
We have searched to define the major arterial parameters that determine aortic systolic (Ps) and diastolic (Pd) pressure in the dog. Measured aortic flows were used as input to the 2-element windkessel model of the arterial system, with peripheral resistan ...
Previously, we found evidence that bisferiens peaks in the radial artery pressure wave in the newborn infant may suggest the presence of a left-to-right shunt through a patent ductus arteriosus (PDA). The purpose of the present study was to analyze the ori ...