Publication

Systematic design of a multi-input multi-output controller by model-based decoupling: a demonstration on TCV using multi-species gas injection

Abstract

In this paper, we present the first results of a systematically designed multi-input multi-output gas-injection controller on Tokamak a Configuration Variable (TCV). We demonstrate the simultaneous real-time control of the NII emission front position and line-integrated electron density using nitrogen and deuterium gas injection. Injection of nitrogen and/or deuterium affects both the NII emission front position and line-integrated electron density. This interplay between control loops is termed interaction and, when strongly present, makes designing a controller a significantly more complex problem. Interaction between the control loops can be reduced to an acceptable level by redefining inputs, decoupling the multi-input multi-output control problem to separated single-input single-output problems. We demonstrate how to achieve this by defining virtual control inputs from linear combinations of the actuators available. For the demonstration on TCV, linear combinations of deuterium and nitrogen gas injection are computed from transfer-function models to obtain these virtual inputs. The virtual inputs reduce the interaction in the control-relevant frequency range to a point where control of the NII emission front position and line-integrated electron density can be considered decoupled, allowing for the much simpler design of single-input single-output controllers for each loop. Implementing the controllers with the virtual inputs gives the multi-input multi-output gas-injection controller. This approach is well established in the control community, and is presented here as a demonstration to drive developments of multi-input multi-output control strategies. In particular, the envisioned control of particle- and heat fluxes impacting the divertor targets by injection of multiple gas species.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Virtual fixture
A virtual fixture is an overlay of augmented sensory information upon a user's perception of a real environment in order to improve human performance in both direct and remotely manipulated tasks. Developed in the early 1990s by Louis Rosenberg at the U.S. Air Force Research Laboratory (AFRL), Virtual Fixtures was a pioneering platform in virtual reality and augmented reality technologies. Virtual Fixtures was first developed by Louis Rosenberg in 1992 at the USAF Armstrong Labs, resulting in the first immersive augmented reality system ever built.
Virtual reality
Virtual reality (VR) is a simulated experience that employs pose tracking and 3D near-eye displays to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video games), education (such as medical or military training) and business (such as virtual meetings). Other distinct types of VR-style technology include augmented reality and mixed reality, sometimes referred to as extended reality or XR, although definitions are currently changing due to the nascence of the industry.
Closed-loop controller
A closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.
Show more
Related publications (36)

Data-Driven Control and Optimization under Noisy and Uncertain Conditions

Baiwei Guo

Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
EPFL2023

VIDEZZO: Dependency-aware Virtual Device Fuzzing

Mathias Josef Payer, Flavio Toffalini, Qiang Liu

A virtual machine interacts with its host environment through virtual devices, driven by virtual device messages, e.g., I/O operations. By issuing crafted messages, an adversary can exploit a vulnerability in a virtual device to escape the virtual machine, ...
IEEE COMPUTER SOC2023

Modelling of the FPS for the internal coils and investigating controller discretization effects in TCV

The tokamak in Lausanne, Switzerland (TCV), has been designed to investigate highly elongated plasmas. The elongation improves performance but also introduces a vertical position instability which requires active feedback control to stabilize. The potentia ...
2020
Show more
Related MOOCs (21)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.