Publication

Analysis of accretion disc structure and stability using open code for vertical structure

Pascale Jablonka
2023
Journal paper
Abstract

Detailed chemical abundances of very metal-poor (VMP; [Fe/H] < -2) stars are important for better understanding the first stars, early star formation, and chemical enrichment of galaxies. Big on-going and coming high-resolution spectroscopic surveys provide a wealth of material that needs to be carefully analysed. For VMP stars, their elemental abundances should be derived based on the non-local thermodynamic equilibrium (non-LTE = NLTE) line formation because low metal abundances and low electron number density in the atmosphere produce the physical conditions favourable for the departures from LTE. The galactic archaeology research requires homogeneous determinations of chemical abundances. For this purpose, we present grids of the 1D-NLTE abundance corrections for lines of Na i, Mg i, Ca i, Ca ii, Ti ii, Fe i, Zn i, Zn ii, Sr ii, and Ba ii in the range of atmospheric parameters that represent VMP stars on various evolutionary stages and cover effective temperatures from 4000 to 6500 K, surface gravities from logg\rm log g = 0.5 to 5.0, and metallicities -5.0 = [Fe/H] = -2.0. The data is publicly available, and we provide the tools for interpolating in the grids online.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.