Publication

A wind tunnel study on cyclic yaw control in a wind farm model

Abstract

Dynamic control strategies, such as dynamic induction control [1], were reported as efficient and beneficial in improving wind farm power production. A recent work based on computational fluid dynamics simulation [2] shows that by controlling wake meandering through cyclic yaw angle variation, a faster wake recovery and higher available power in the wake of a wind turbine can be achieved. To investigate the potential of this cyclic yaw control (CYC) strategy in wind farm power improvement, we conducted wind tunnel experiments on a model wind farm consisting of three miniature wind turbines (arranged to be aligned with the inflow direction with a streamwise spacing of five rotor diameters). The yaw angle of the most upwind turbine was controlled to vary sinusoidally. The two control parameters, including the yaw angle amplitude and the yaw Strouhal number (i.e., the normalized frequency), were adjusted to optimize the power performance of the wind farm. Based on both power and wake measurements, we found that cyclic yawing can enhance the lateral flow entrainment and thus increase the power production of the wind farm. The power performance of the wind farm is found to be dependent on the control parameters. A maximum power gain of 15.2% is achieved in our study. We found that the controlled wake meandering dynamics are highly periodic. The phase-averaged wake center trajectory also highly resembles the sine wave, making it possible to predict the instantaneous wake deflection using the wave equation. Furthermore, it is found that the amplitude of periodic wake meandering first increases and then decreases with the increase of the downstream distance from the turbine location. The critical downstream distance (where the amplitude attenuation starts) is found to be around one wavelength. At the growth stage, the amplitude can be well predicted with the yawed wake model [3] (at a yaw angle equal to the yaw angle amplitude of CYC), while the physics of amplitude decay still needs to be better understood to predict the decrease stage. The amplitude decrease can be related to the damping effects (i.e., energy dissipation) due to turbulent wake mixing, which will be considered in future work on analytical model development.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Wind farm
A wind farm or wind park, also called a wind power station or wind power plant, is a group of wind turbines in the same location used to produce electricity. Wind farms vary in size from a small number of turbines to several hundred wind turbines covering an extensive area. Wind farms can be either onshore or offshore. Many of the largest operational onshore wind farms are located in China, India, and the United States. For example, the largest wind farm in the world, Gansu Wind Farm in China had a capacity of over 6,000 MW by 2012, with a goal of 20,000 MW by 2020.
Wind turbine design
Wind turbine design is the process of defining the form and configuration of a wind turbine to extract energy from the wind. An installation consists of the systems needed to capture the wind's energy, point the turbine into the wind, convert mechanical rotation into electrical power, and other systems to start, stop, and control the turbine. In 1919, German physicist Albert Betz showed that for a hypothetical ideal wind-energy extraction machine, the fundamental laws of conservation of mass and energy allowed no more than 16/27 (59.
Wind turbine
A wind turbine is a device that converts the kinetic energy of wind into electrical energy. , hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels.
Show more
Related publications (83)
Related MOOCs (8)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.