Brain implantBrain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern brain implants and the focus of much current research is establishing a biomedical prosthesis circumventing areas in the brain that have become dysfunctional after a stroke or other head injuries. This includes sensory substitution, e.g., in vision.
Behavioral neuroscienceBehavioral neuroscience, also known as biological psychology, biopsychology, or psychobiology, is the application of the principles of biology to the study of physiological, genetic, and developmental mechanisms of behavior in humans and other animals. Behavioral neuroscience as a scientific discipline emerged from a variety of scientific and philosophical traditions in the 18th and 19th centuries. René Descartes proposed physical models to explain animal as well as human behavior.
Deep brain stimulationDeep brain stimulation (DBS) is a neurosurgical procedure involving the placement of a medical device called a neurostimulator, which sends electrical impulses, through implanted electrodes, to specific targets in the brain (the brain nucleus) for the treatment of movement disorders, including Parkinson's disease, essential tremor, dystonia, and other conditions such as obsessive-compulsive disorder (OCD) and epilepsy. While its underlying principles and mechanisms are not fully understood, DBS directly changes brain activity in a controlled manner.
Blood–brain barrierThe blood–brain barrier (BBB) is a highly selective semipermeable border of endothelial cells that prevents solutes in the circulating blood from non-selectively crossing into the extracellular fluid of the central nervous system where neurons reside. The blood–brain barrier is formed by endothelial cells of the capillary wall, astrocyte end-feet ensheathing the capillary, and pericytes embedded in the capillary basement membrane.
Cognitive skillCognitive skills, also called cognitive functions, cognitive abilities or cognitive capacities, are brain-based skills which are needed in acquisition of knowledge, manipulation of information and reasoning. They have more to do with the mechanisms of how people learn, remember, solve problems and pay attention, rather than with actual knowledge. Cognitive skills or functions encompass the domains of perception, attention, memory, learning, decision making, and language abilities.
Memory consolidationMemory consolidation is a category of processes that stabilize a memory trace after its initial acquisition. A memory trace is a change in the nervous system caused by memorizing something. Consolidation is distinguished into two specific processes. The first, synaptic consolidation, which is thought to correspond to late-phase long-term potentiation, occurs on a small scale in the synaptic connections and neural circuits within the first few hours after learning.
Functional specialization (brain)In neuroscience, functional specialization is a theory which suggests that different areas in the brain are specialized for different functions. History of neuroscience Phrenology, created by Franz Joseph Gall (1758–1828) and Johann Gaspar Spurzheim (1776–1832) and best known for the idea that one's personality could be determined by the variation of bumps on their skull, proposed that different regions in one's brain have different functions and may very well be associated with different behaviours.
Cognitive scienceCognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition (in a broad sense). Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information.
Neural oscillationNeural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons.
Procedural memoryProcedural memory is a type of implicit memory (unconscious, long-term memory) which aids the performance of particular types of tasks without conscious awareness of these previous experiences. Procedural memory guides the processes we perform, and most frequently resides below the level of conscious awareness. When needed, procedural memories are automatically retrieved and utilized for execution of the integrated procedures involved in both cognitive and motor skills, from tying shoes, to reading, to flying an airplane.