Distributional Regression and Autoregression via Optimal Transport
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...
We consider the problem of estimating the slope function in a functional regression with a scalar response and a functional covariate. This central problem of functional data analysis is well known to be ill-posed, thus requiring a regularised estimation p ...
We address the problem of minimizing a smooth function f0(x) over a compact set D defined by smooth functional constraints fi(x)≤0, i=1,…,m given noisy value measurements of fi(x). This problem arises in safety-critical applications, where certain paramete ...
Background and Purpose- Poststroke fatigue affects a large proportion of stroke survivors and is associated with a poor quality of life. In a recent trial, modafinil was shown to be an effective agent in reducing poststroke fatigue; however, not all patien ...
The oxidative potential (OP) of fine and coarse fractions of ambient aerosols was studied in the urban environment of Athens, Greece. OP was quantified using a dithiothreitol (DTT) assay, applied to the water soluble fraction of aerosol that was extracted ...
Recently, we found very weak correlations between the magnitudes of visual illusions. However, we found strong correlations between 19 variants of the Ebbinghaus illusion which differed in color, shape or texture, suggesting that different illusions make u ...
A data-driven reduced basis (RB) method for parametrized time-dependent problems is proposed. This method requires the offline preparation of a database comprising the time history of the full-order solutions at parameter locations. Based on the full-order ...
We propose a non-intrusive reduced basis (RB) method for parametrized nonlinear partial differential equations (PDEs) that leverages models of different accuracy. The method extracts parameter locations from a collection of low-fidelity (LF) snapshots for ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes over th ...
The functional linear model extends the notion of linear regression to the case where the response and covariates are iid elements of an infinite-dimensional Hilbert space. The unknown to be estimated is a Hilbert-Schmidt operator, whose inverse is by defi ...