How accurate are flux-tube (local) gyrokinetic codes in modeling energetic particle effects on core turbulence?
Related publications (72)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
The overall performance of fusion devices, such as tokamaks, is strongly correlated to thephenomena that occur in the boundary region, the outer plasma region that faces the wall of the device. The boundary plays a crucial role in regulating the heat and p ...
In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
This thesis delves into the potential of magnetic fusion energy, and in particular focuses on the stellarator concept. Stellarators use external coils to produce 3-dimensional (3D) magnetic fields that confine a thermonuclear plasma in a topologically toro ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
Local nonlinear gyrokinetic simulations of tokamak plasmas demonstrate that turbulent eddies can extend along magnetic field lines for hundreds of poloidal turns when the magnetic shear is very small. By accurately modeling different field line topologies ...
A key challenge for the development of fusion reactors based on magnetic confinement, such as tokamaks and stellarators, is the control of the turbulent processes. The most prominent feature of turbulence in the Scrape-Off Layer (SOL), the volume between t ...
The turbulence characteristics of plasmas with internal transport barriers in the HL-2A tokamak are analyzed by means of linear gyrokinetic simulations. It is found that turbulence is dominated by the ion temperature gradient (ITG) mode together with large ...
Nonlinear simulations of Alfvén modes (AMs) driven by energetic particles (EPs) in the presence of turbulence are performed with the gyrokinetic particle-in-cell code ORB5. The AMs carry a heat flux, and consequently they nonlinearly modify the plasma temp ...