Atomic-Level and Surface Structure of Calcium Silicate Hydrate Nanofoils
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The calcium silicate hydrates (C-S-H) are without doubt one of the most important hydration products in a hardened cement paste. Giving the complexity of the microstructure that forms by hydration of ordinary Portland cement (OPC) and the more recently use ...
The most promising solution towards cementitious materials with a lower carbon footprint is the partial substitution of the clinker by supplementary cementitious materials (SCMs) such as fly ash, blast furnace slag, limestone and calcined clays. The produc ...
By replacing part of Portland cement with so-called supplementary cementitious materials (SCMs) it is possible to reduce the CO2 footprint of the cement industry. These SCMs are commonly limestone, calcined clay, slag and fly ash. While doing so the early ...
Cement production accounts for approximately 8% of man-made CO2 emissions. Lowering these CO2 emissions is currently one of the most important and urgent research topics within the cement community. To reduce these emissions, the Portland cement (PC) is pa ...
Calcium silicate hydrate (C-S-H) is the main hydration product in Portland and blended cements, and greatly affects durability and mechanical properties of the hydrated cement. In the presence of Al-rich supplementary cementitious materials (SCMs), C-(A-)S ...
To reduce the CO2 footprint of construction materials, concrete producers blend their cement with Supplementary Cementitious Materials (SCMs). SCMs such as fly ash or blast furnace slag are mostly the byproducts of other industries. And while SCMs are chos ...
This paper investigates the effect of KOH and NaOH on C-S-H structure and solubility. Both KOH and NaOH have a similar effect, they increase pH values and silicon concentrations, and decrease calcium concentrations. At higher alkali hydroxide concentration ...
The effect of Al and of pH on the structure of calcium silicate hydrate (C-S-H), the most important hydration product in Portland and blended cement, was studied at Ca/Si similar to 1.0. The presence of Al led to higher amounts of secondary phases, larger ...
This study investigates the difference between the reactivity of slag in NaOH solution (w/s = 100) and in cement paste (w/b = 0.4). The reactivity of slag is much higher in NaOH solution than in cement paste. When the NaOH solution is saturated with portla ...
Understanding the mechanism controlling the sulfate requirement of blended cements is crucial for a successful deployment of these technologies towards a more sustainable industry. Particularly, clarification regarding the role of alumina content on the su ...