Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In this paper, we study the security of the Key-Alternating Feistel (KAF) ciphers, a class of key alternating ciphers with the Feistel structure, where each round of the cipher is instantiated with n-bit public round permutation Pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, namely the i-th round of the cipher maps (XL,XR)↦(XR,Pi(XR circle plus Ki)circle plus Ki circle plus XL).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}We have shown that our 5 round construction with independent round permutations and independent round keys achieves 2n/3-bit security in the random permutation model, i.e., the setting where the adversary is allowed to make forward and inverse queries to the round permutations in a black box way.