Implementing Multi-Electron Transfer Strategies in Uranium Chemistry
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
One of the main goals of organometallic chemistry in the last decades was the activation of small molecule in mild reaction conditions. Even though multiple examples of catalytic cycles able to produce fine chemicals from cheap and abundant sources using t ...
Complexes of uranium in low oxidation state have shown the ability to activate non-reactive small molecules such as N-2. However, the multi-electron transfer required for such activation remains limited in uranium chemistry. Here, we review our recent rese ...
Herein, we report the redox reactivity of a multimetallic uranium complex supported by triphenylsiloxide (−OSiPh3) ligands, where we show that low valent synthons can be stabilized via an unprecedented mechanism involving intramolecular ligand migration. T ...
The activation of small molecules is a paramount challenge in modern chemistry. The use of cheap and abundant molecules such as N2, H2, CO2, or CO as energy supplies or as precursors for fine chemicals production is highly desirable. In particular, the onl ...
Major uranium (U) deposits worldwide are exploited by acid leaching, known as 'in-situ recovery' (ISR). ISR involves the injection of an acid fluid into ore-bearing aquifers and the pumping of the resulting metal-containing solution through cation exchange ...
2022
Knowledge of fundamental chemical properties of all environmentally relevant uranium species is essential to understand environmental uranium mobility and develop novel remediation strate-gies. A myriad of uranium(VI) and uranium(IV) compounds has been stu ...
EPFL2020
The development of new processes for the selective and sustainable transformation of abundant small molecules constitutes one of the major research areas in inorganic and organometallic chemistry. These molecules as CO2, CO, N2 and H2 are abundant reservoi ...
EPFL2019
, ,
Uranium (U) is a ubiquitous element in the Earth's crust at similar to 2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain ...
The synthesis and reactivity of uranium compounds supported by the tris-tert-butoxysiloxide ligand is surveyed. The multiple binding modes of the tert-butoxysiloxide ligand have proven very well suited to stabilize highly reactive homo- and heteropolymetal ...
Uranium (U) in situ bioremediation has been investigated as a cost-effective strategy to tackle U contamination in the subsurface. While uraninite was believed to be the only product of bioreduction, numerous studies have revealed that noncrystalline U(IV) ...