Publication

Hyperbolic Fourier series

Maryna Viazovska
2021
Report or working paper
Abstract

In this article we explain the essence of the interrelation described in [PNAS 118, 15 (2021)] on how to write explicit interpolation formula for solutions of the Klein-Gordon equation by using the recent Fourier pair interpolation formula of Viazovska and Radchenko from [Publ Math-Paris 129, 1 (2019)]. We construct explicitly the sequence in L1(R) which is biorthogonal to the system 1, exp(iπnx), exp(iπn/x), n∈Z∖{0}, and show that it is complete in L1(R). We associate with each f∈L1(R,(1+x2)−1dx) its hyperbolic Fourier series h0(f)+∑n∈Z∖{0}(hn(f)eiπnx+mn(f)e−iπn/x) and prove that it converges to f in the space of tempered distributions on the real line. Applied to the above mentioned biorthogonal system, the integral transform given by Uφ(x,y):=∫Rφ(t)exp(ixt+iy/t)dt, for φ∈L1(R) and (x,y)∈R2, supplies interpolating functions for the Klein-Gordon equation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.