Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Network neutrality is important for users, content providers, policymakers, and regulators interested in understanding how network providers differentiate performance. When determining whether a network differentiates against certain traffic, it is important to have strong evidence, especially given that traffic differentiation is illegal in certain countries. In prior work, WeHe detects differentiation via end-to-end throughput measurements between a client and server but does not isolate the network responsible for it. Differentiation can occur anywhere on the network path between endpoints; thus, further evidence is needed to attribute differentiation to a specific network. We present a system, WeHeY, built atop WeHe, that can localize traffic differentiation, i.e., obtain concrete evidence that the differentiation happened within the client's ISP. Our system builds on ideas from network performance tomography; the challenge we solve is that TCP congestion control creates an adversarial environment for performance tomography (because it can significantly reduce the performance correlation on which tomography fundamentally relies). We evaluate our system via measurements "in the wild,'' as well as in emulated scenarios with a wide-area testbed; we further explore its limits via simulations and show that it accurately localizes traffic differentiation across a wide range of network conditions. WeHeY's source code is publicly available athttps://nal-epfl.github.io/WeHeY.
Pavlos Nikolopoulos, Muhammad Abdullah