Direct air captureDirect air capture (DAC) is the use of chemical or physical processes to extract carbon dioxide directly from the ambient air. If the extracted is then sequestered in safe long-term storage (called direct air carbon capture and sequestration (DACCS)), the overall process will achieve carbon dioxide removal and be a "negative emissions technology" (NET). As of 2022, DAC has yet to become profitable because the cost of using DAC to sequester carbon dioxide is several times the carbon price.
Time reversibilityA mathematical or physical process is time-reversible if the dynamics of the process remain well-defined when the sequence of time-states is reversed. A deterministic process is time-reversible if the time-reversed process satisfies the same dynamic equations as the original process; in other words, the equations are invariant or symmetrical under a change in the sign of time. A stochastic process is reversible if the statistical properties of the process are the same as the statistical properties for time-reversed data from the same process.
Oxy-fuel combustion processOxy-fuel combustion is the process of burning a fuel using pure oxygen, or a mixture of oxygen and recirculated flue gas, instead of air. Since the nitrogen component of air is not heated, fuel consumption is reduced, and higher flame temperatures are possible. Historically, the primary use of oxy-fuel combustion has been in welding and cutting of metals, especially steel, since oxy-fuel allows for higher flame temperatures than can be achieved with an air-fuel flame.
Coal pollution mitigationCoal pollution mitigation, sometimes called clean coal, is a series of systems and technologies that seek to mitigate the health and environmental impact of coal; in particular air pollution from coal-fired power stations, and from coal burnt by heavy industry. The primary focus is on sulfur dioxide () and nitrogen oxides (), the most important gases which caused acid rain; and particulates which cause visible air pollution, illness and premature deaths. can be removed by flue-gas desulfurization and by selective catalytic reduction (SCR).
Loschmidt's paradoxIn physics, Loschmidt's paradox (named for J.J. Loschmidt), also known as the reversibility paradox, irreversibility paradox, or Umkehreinwand (), is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics. This puts the time reversal symmetry of (almost) all known low-level fundamental physical processes at odds with any attempt to infer from them the second law of thermodynamics which describes the behaviour of macroscopic systems.
EmergyEmergy is the amount of energy consumed in direct and indirect transformations to make a product or service. Emergy is a measure of quality differences between different forms of energy. Emergy is an expression of all the energy used in the work processes that generate a product or service in units of one type of energy. Emergy is measured in units of emjoules, a unit referring to the available energy consumed in transformations. Emergy accounts for different forms of energy and resources (e.g.
Flowering plantFlowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (ˌændʒiəˈspərmi:), commonly called angiosperms. They include all forbs (flowering plants without a woody stem), grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. The term "angiosperm" is derived from the Greek words ἀγγεῖον /angeion ('container, vessel') and σπέρμα / sperma ('seed'), meaning that the seeds are enclosed within a fruit.
Sulfur–iodine cycleThe sulfur–iodine cycle (S–I cycle) is a three-step thermochemical cycle used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat. The three reactions that produce hydrogen are as follows: I2 + SO2 + 2 H2O 2 HI + H2SO4 (); Bunsen reaction The HI is then separated by distillation or liquid/liquid gravitic separation.
Business process discoveryBusiness process discovery (BPD) related to business process management and process mining is a set of techniques that manually or automatically construct a representation of an organisations' current business processes and their major process variations. These techniques use data recorded in the existing organisational methods of work, documentations, and technology systems that run business processes within an organisation. The type of data required for process discovery is called an event log.