Empty setIn mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set".
Filtered algebraIn mathematics, a filtered algebra is a generalization of the notion of a graded algebra. Examples appear in many branches of mathematics, especially in homological algebra and representation theory. A filtered algebra over the field is an algebra over that has an increasing sequence of subspaces of such that and that is compatible with the multiplication in the following sense: In general there is the following construction that produces a graded algebra out of a filtered algebra.
Cap productIn algebraic topology the cap product is a method of adjoining a chain of degree p with a cochain of degree q, such that q ≤ p, to form a composite chain of degree p − q. It was introduced by Eduard Čech in 1936, and independently by Hassler Whitney in 1938. Let X be a topological space and R a coefficient ring. The cap product is a bilinear map on singular homology and cohomology defined by contracting a singular chain with a singular cochain by the formula: Here, the notation indicates the restriction of the simplicial map to its face spanned by the vectors of the base, see Simplex.
Obstruction theoryIn mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the existence of certain fields of linear independent vectors. Obstruction theory turns out to be an application of cohomology theory to the problem of constructing a cross-section of a bundle.
Size functionSize functions are shape descriptors, in a geometrical/topological sense. They are functions from the half-plane to the natural numbers, counting certain connected components of a topological space. They are used in pattern recognition and topology. In size theory, the size function associated with the size pair is defined in the following way.
Hopf algebraIn mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an (unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.
Associated graded ringIn mathematics, the associated graded ring of a ring R with respect to a proper ideal I is the graded ring: Similarly, if M is a left R-module, then the associated graded module is the graded module over : For a ring R and ideal I, multiplication in is defined as follows: First, consider homogeneous elements and and suppose is a representative of a and is a representative of b. Then define to be the equivalence class of in . Note that this is well-defined modulo . Multiplication of inhomogeneous elements is defined by using the distributive property.
Term algebraIn universal algebra and mathematical logic, a term algebra is a freely generated algebraic structure over a given signature. For example, in a signature consisting of a single binary operation, the term algebra over a set X of variables is exactly the free magma generated by X. Other synonyms for the notion include absolutely free algebra and anarchic algebra. From a perspective, a term algebra is the initial object for the category of all X-generated algebras of the same signature, and this object, unique up to isomorphism, is called an initial algebra; it generates by homomorphic projection all algebras in the category.
Crystalline cohomologyIn mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by and developed by . Crystalline cohomology is partly inspired by the p-adic proof in of part of the Weil conjectures and is closely related to the algebraic version of de Rham cohomology that was introduced by Grothendieck (1963).
Differential graded moduleIn algebra, a differential graded module, or dg-module, is a -graded module together with a differential; i.e., a square-zero graded endomorphism of the module of degree 1 or −1, depending on the convention. In other words, it is a chain complex having a structure of a module, while a differential graded algebra is a chain complex with a structure of an algebra. In view of the module-variant of Dold–Kan correspondence, the notion of an -graded dg-module is equivalent to that of a simplicial module; "equivalent" in the sense; see below.