Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Unraveling the complexities of brain function, which is crucial for advancing human health, remains a grand challenge. This endeavor demands precise monitoring of small molecules such as neurotransmitters, the chemical messengers in the brain. In this Perspective, we explore the potential of aptamers, selective synthetic bioreceptors integrated into electronic affinity platforms to address limitations in neurochemical biosensing. We emphasize the importance of characterizing aptamer thermodynamics and target binding to realize functional biosensors in biological systems. We focus on two label-free affinity platforms spanning the micro- to nanoscale: field-effect transistors and nanopores. Integration of well-characterized structure-switching aptamers overcame nonspecific binding, a challenge that has hindered the translation of biosensors from the lab to the clinic. In a transformative era driven by neuroscience breakthroughs, technological innovations, and multidisciplinary collaborations, an aptamer renaissance holds the potential to bridge technological gaps and reshape the landscape of diagnostics and neuroscience.
Wulfram Gerstner, Johanni Michael Brea, Alireza Modirshanechi, Sophia Becker