Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In order to alleviate the environmental impact that nitrogen fertilizers production is responsible for, several efforts have been addressed to incentivize the partial or total decarbonization of the supply chains of ammonia and its derivatives. The decarbonization of the nitrogen fertilizers sector might help not only improving its carbon footprint, but also reducing its dependence on international market prices of natural gas. To this end, in this work, two fertilizers production plants, namely nitric acid and urea, are integrated to a kraft pulp mill via black liquor gasification to supply the renewable input required by the chemical processes. The performance of the proposed systems is assessed and compared in the light of thermodynamic, economic, and environmental indicators. The choice of the utility system has been driven by the interrelation of the market conditions, as well as the extent of the energy integration of the chemical plants. As a result, the exergy efficiency of the integrated plants remains competitive against the conventional kraft pulp mill thanks to the optimal selection of the operating conditions of the utility system. This efficiency indicator compares the exergy input with the minimum theoretical work needed to reversibly produce the chemicals out from the components in the environment. Furthermore, the overall CO2 emissions balance achieves negative values for some scenarios, pointing out the potential for atmospheric CO2 depletion when the integrated processes are implemented. The indirect emissions of the biomass supply chain proved to have a great impact in the CO2 balance. Finally, the findings suggest that both nitric acid and urea production have positive incremental net present values (INPVs) across the range of carbon taxes considered, indicating the economic viability of these integrated systems vis-à-vis the traditional standalone pulp and fertilizers production plants.
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier
François Maréchal, Daniel Alexander Florez Orrego, Shivom Sharma, Meire Ellen Gorete Ribeiro Domingos
François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos