Creating small-molecule-functionalized platforms for high-throughput screening or biosensing applications requires precise placement of probes on solid substrates and the ability to capture and to sort targets from multicomponent samples. Here, chemical lift-off lithography was used to fabricate large-area, high-fidelity patterns of small-molecule probes. Lift-off lithography enables biotin–streptavidin patterned recognition with feature sizes ranging from micrometers to below 30 nm. Subtractive patterning via lift-off facilitated insertion of a different type of molecule and, thus, multiplexed side-by-side placement of small-molecule probes such that binding partners were directed to cognate probes from solution. Small molecules mimicking endogenous neurotransmitters were patterned using lift-off lithography to capture native membrane-associated receptors. We characterized patterning of alkanethiols that self-assemble on Au having different terminal functional groups to expand the library of molecules amenable to lift-off lithography enabling a wide range of functionalization chemistries for use with this simple and versatile patterning method.
Pierre Gönczy, Niccolo Banterle
Rosario Scopelliti, Holger Frauenrath, Enzo Jean Raymond Bomal, Reuben Yeo Jueyuan, Vincent Matthieu Guillaume Croué