Publication

Task-driven neural network models predict neural dynamics of proprioception: Neural network model weights

Abstract

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network modeling approach to investigate the neural code of proprioceptive neurons in both cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale, naturalistic movement repertoire to train thousands of neural network models on 16 behavioral tasks, each reflecting a hypothesis about the neural computations of the ascending proprioceptive pathway. We found that the network’s internal representations developed through task-optimization generalize from synthetic data to predict single-trial neural activity in CN and S1 of primates performing center-out reaching. Task-driven models outperform linear encoding models and data-driven models. Behavioral tasks, which aim to predict the limb position and velocity were the best to predict the neural activity in both areas. Architectures that are better at solving the tasks are also better at predicting the neural data. Last, since task-optimization develops representations that better predict neural activity during active but not passively generated movements, we hypothesize that neural activity in CN and S1 is top-down modulated during goal-directed movements.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.