Stefan–Boltzmann lawThe Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan, who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically. For an ideal absorber/emitter or black body, the Stefan–Boltzmann law states that the total energy radiated per unit surface area per unit time (also known as the radiant exitance) is directly proportional to the fourth power of the black body's temperature, T: The constant of proportionality, , is called the Stefan–Boltzmann constant.
Building insulationBuilding insulation is material used in a building (specifically the building envelope) to reduce the flow of thermal energy. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation (e.g. for vibrations caused by industrial applications). Often an insulation material will be chosen for its ability to perform several of these functions at once. Insulation is an important economic and environmental investment for buildings.
Lambert's cosine lawIn optics, Lambert's cosine law says that the radiant intensity or luminous intensity observed from an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the cosine of the angle θ between the observer's line of sight and the surface normal; I = I0 cos θ. The law is also known as the cosine emission law or Lambert's emission law. It is named after Johann Heinrich Lambert, from his Photometria, published in 1760. A surface which obeys Lambert's law is said to be Lambertian, and exhibits Lambertian reflectance.