Research questionA research question is "a question that a research project sets out to answer". Choosing a research question is an essential element of both quantitative and qualitative research. Investigation will require data collection and analysis, and the methodology for this will vary widely. Good research questions seek to improve knowledge on an important topic, and are usually narrow and specific. To form a research question, one must determine what type of study will be conducted such as a qualitative, quantitative, or mixed study.
Knowledge modelingKnowledge modeling is a process of creating a computer interpretable model of knowledge or standard specifications about a kind of process and/or about a kind of facility or product. The resulting knowledge model can only be computer interpretable when it is expressed in some knowledge representation language or data structure that enables the knowledge to be interpreted by software and to be stored in a database or data exchange file.
Psychology of reasoningThe psychology of reasoning (also known as the cognitive science of reasoning) is the study of how people reason, often broadly defined as the process of drawing conclusions to inform how people solve problems and make decisions. It overlaps with psychology, philosophy, linguistics, cognitive science, artificial intelligence, logic, and probability theory. Psychological experiments on how humans and other animals reason have been carried out for over 100 years. An enduring question is whether or not people have the capacity to be rational.
Outline of human intelligenceThe following outline is provided as an overview of and topical guide to human intelligence: Human intelligence is, in the human species, the mental capacities to learn, understand, and reason, including the capacities to comprehend ideas, plan, solve problems, and use language to communicate. Collective intelligence Collective wisdom Common sense Noogenesis Humanistic intelligence Outline of thought Cognition and mental processing Child prodigy List of child prodigies Genius Polymath Intellectual disabili
Text-to-video modelA text-to-video model is a machine learning model which takes as input a natural language description and produces a video matching that description. Video prediction on making objects realistic in a stable background is performed by using recurrent neural network for a sequence to sequence model with a connector convolutional neural network encoding and decoding each frame pixel by pixel, creating video using deep learning. Data collection and data set preparation using clear video from kinetic human action video.
DBpediaDBpedia (from "DB" for "database") is a project aiming to extract structured content from the information created in the Wikipedia project. This structured information is made available on the World Wide Web. DBpedia allows users to semantically query relationships and properties of Wikipedia resources, including links to other related datasets. In 2008, Tim Berners-Lee described DBpedia as one of the most famous parts of the decentralized Linked Data effort.
IBM WatsonIBM Watson is a question-answering computer system capable of answering questions posed in natural language, developed in IBM's DeepQA project by a research team led by principal investigator David Ferrucci. Watson was named after IBM's founder and first CEO, industrialist Thomas J. Watson. The computer system was initially developed to answer questions on the quiz show Jeopardy! and in 2011, the Watson computer system competed on Jeopardy! against champions Brad Rutter and Ken Jennings, winning the first place prize of 1 million USD.
Inductive programmingInductive programming (IP) is a special area of automatic programming, covering research from artificial intelligence and programming, which addresses learning of typically declarative (logic or functional) and often recursive programs from incomplete specifications, such as input/output examples or constraints. Depending on the programming language used, there are several kinds of inductive programming.
Multi-agent reinforcement learningMulti-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics. Multi-agent reinforcement learning is closely related to game theory and especially repeated games, as well as multi-agent systems.
Deductive-nomological modelThe deductive-nomological model (DN model) of scientific explanation, also known as Hempel's model, the Hempel–Oppenheim model, the Popper–Hempel model, or the covering law model, is a formal view of scientifically answering questions asking, "Why...?". The DN model poses scientific explanation as a deductive structure, one where truth of its premises entails truth of its conclusion, hinged on accurate prediction or postdiction of the phenomenon to be explained.