Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
To date, the vast majority of studies seeking to link discharge to solute concentrations have been based on representations of fluid age distributions in watersheds that are time-invariant. As increasingly detailed spatial and temporal datasets become available for weathering-derived riverine solute concentrations, the capacity to link this mass flux to transient routing of reactive fluids through Critical Zone environments is vital to quantitative interpretation. Relationships between fluid age distributions and the stable isotope ratios of these geogenic solutes are even less developed, yet these signatures are vital to parsing the suite of water-rock-life interactions that create concentration-discharge relationships. Here we offer the first merging of a hydrological model featuring time-variant fluid age distributions with a geochemical model for isotopically fractionating weathering reactions. Using SiO2(aq) and the corresponding silicon isotope ratio 30Si as an example, we show that the stable isotope signatures of riverine solutes produced by weathering reactions reflect a component of the fluid age distribution that is unique to the corresponding solute concentrations. This distinct sensitivity is the result of a stronger link between isotope ratios and the age distribution parameters describing a given watershed. This novel modeling framework is used to provide a quantitative basis for the interpretation of SiO2(aq) and 30Si in six low-order streams spread across a diversity of climates, geologies, and ecosystems. To our knowledge, this is the first forward and process-based model to describe the isotopic signatures of solutes derived from weathering reactions in watersheds subject to time-varying discharge.
Marinella Mazzanti, Rizlan Bernier-Latmani, Margaux Camille Andréa Molinas, Radmila Faizova, Ashley Richards Brown
Jana Freiin von Freyberg, Davide Canone