Publication

Spectral representation of EEG data using learned graphs with application to motor imagery decoding

Abstract

Electroencephalography (EEG) data entail a complex spatiotemporal structure that reflects ongoing organi-zation of brain activity. Characterization of the spatial patterns is an indispensable step in numerous EEG processing pipelines. We present a novel method for transforming EEG data into a spectral representation. First, we learn subject-specific graphs from each subject's EEG data. Second, by eigendecomposition of the normalized Laplacian matrix of each subject's graph, an orthonormal basis is obtained using which any given EEG map of the subject can be decomposed, providing a spectral representation of the data. We show that energy of EEG maps is strongly associated with low frequency components of the learned basis, reflecting the smooth topography of EEG maps. As a proof-of-concept for this alternative view of EEG data, we consider the task of decoding two-class motor imagery (MI) data. To this aim, the spectral representations are first mapped into a discriminative subspace for differentiating two-class data using a projection matrix obtained by the Fukunaga-Koontz transform (FKT). An SVM classifier is then trained and tested on the resulting features to differentiate MI classes. The method is benchmarked against features extracted from a subject-specific functional connectivity matrix as well as four alternative MI-decoding methods on Dataset IVa of BCI Competition III. Experimental results show the superiority of the proposed method over alternative approaches in differentiating MI classes, reflecting the added benefit of (i) decomposing EEG data using data-driven, subject-specific harmonic bases, and (ii) accounting for class-specific temporal variations in spectral profiles.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.