Scalable Quantum Algorithms for Noisy Quantum Computers
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form factors due to the slow velocity of acoustic waves, and are already used in applications ranging from timing to wireless filters. Over the past decade, novel ways i ...
Entanglement forging based variational algorithms leverage the bipartition of quantum systems for addressing ground-state problems. The primary limitation of these approaches lies in the exponential summation required over the numerous potential basis stat ...
We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions. The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global optimization with linear scaling in the number ...
Quantum sensors and qubits are usually two-level systems (TLS), the quantum analogues of classical bits assuming binary values 0 or 1. They are useful to the extent to which superpositions of 0 and 1 persist despite a noisy environment. The standard prescr ...
Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the n ...
Much attention has been paid to dynamical simulation and quantum machine learning (QML) independently as applications for quantum advantage, while the possibility of using QML to enhance dynamical simulations has not been thoroughly investigated. Here we d ...
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
Parametric amplifiers play a crucial role in modern quantum technology by enabling the enhancement of weak signals with minimal added noise. Traditionally, Josephson junctions have been the primary choice for constructing parametric amplifiers. Nevertheles ...