Knowledge Distillation for 6D Pose Estimation by Aligning Distributions of Local Predictions
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
We propose a test -time adaptation for 6D object pose tracking that learns to adapt a pre -trained model to track the 6D pose of novel objects. We consider the problem of 6D object pose tracking as a 3D keypoint detection and matching task and present a mo ...
Elsevier Sci Ltd2024
, ,
Epilepsy is one of the most prevalent brain disorders that disrupts the lives of millions worldwide. For patients with drug-resistant seizures, there exist implantable devices capable of monitoring neural activity, promptly triggering neurostimulation to r ...
Rationale: Given the expanding number of COVID-19 cases and the potential for new waves of infection, there is an urgent need for early prediction of the severity of the disease in intensive care unit (ICU) patients to optimize treatment strategies.Objecti ...
The use of drones in search and rescue (SAR) missions can be very cognitively demanding. Since high levels of cognitive workload can negatively affect human performance, there is a risk of compromising the mission and leading to failure with catastrophic o ...
Learning in the brain is poorly understood and learning rules that respect biological constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a learning rule that takes inspiration from neuroscience and recent advances ...
We derive generalization and excess risk bounds for neural networks using a family of complexity measures based on a multilevel relative entropy. The bounds are obtained by introducing the notion of generated hierarchical coverings of neural networks and b ...
Superagers are defined as older adults who have youthful memory performance comparable to that of middle-aged adults. Classifying superagers based on the brain connectome using machine learning modeling can provide important insights on the physiology unde ...
A major challenge in the common approach of hot water generation in residential houses lies in the highly stochastic nature of domestic hot water (DHW) demand. Learning hot water use behavior enables water heating systems to continuously adapt to the stoch ...